
Crypto Trading Bots

Scripts Strategies Cheat Sheet

> Getting started

Install Anaconda
Open a terminal and run:

Last edit: Dec, 2022
Author: Federico Cardoso @dardonacci

1.
2.
 >>> git clone https://github.com/hummingbot/hummingbot.git
 >>> cd hummingbot
 >>> ./install
 >>> conda activate hummingbot
 >>> ./compile
3. Code your script under the scripts folder!

> Scripts basics

The Scripts are a subclass of ScriptStrategyBase
You can define the variables that you will use as class
variables, there is no configuration file for scripts.

> Connectors

Best ask: connector.get_price(trading_pair, is_buy: True)
Best bid: connector.get_price(trading_pair, is_buy: False)
Mid-price: connector.get_mid_price(trading_pair)
Order book: connector.get_order_book(trading_pair)

Returns a CompositeOrderBook and the most common methods are:
ask_entries() --> Iterator of OrderBookRow
bid_entries() --> Iterator of OrderBookRow
snapshot() --> Tuple(Bids as DataFrame, Asks as DataFrame)

self.connectors["binance"].get_mid_price("ETH-USDT")
Example:

> Market operations
Create and Cancel orders

> Account data
Balance

> Events

did_create_buy_order(self, event: BuyOrderCreatedEvent)
did_create_sell_order(self, event: SellOrderCreatedEvent)
did_fill_order(self, event: OrderFilledEvent)
did_fail_order(self, event: MarketOrderFailureEvent)
did_cancel_order(self, event: OrderCancelledEvent)
did_expire_order(self, event: OrderExpiredEvent)
did_complete_buy_order(self, event: BuyOrderCompletedEvent)
did_complete_sell_order(self, event: SellOrderCompletedEvent)

To handle different market events in the strategy by implementing
the following methods.

> Other

self.notify_hb_app(msg)
self.notify_hb_app_with_timestamp(msg)

To send notifications to the Hummingbot Application using the
following methods:

Note: if you have the Telegram integration activated, you will
receive the notifications there too.

When you run the status command in the app, you will receive the
information that is coded under the method format_status.
You can implement this method in your script to show the info
that you want
By default, the format status shows the balances and active
orders. (check the implementation in ScriptStrategyBase)

> Accounting

OrderCandidate(trading_pair, is_maker, order_type, order_side,
amount, price)
Has methods to populate the object with the collateral needed,
the fees, and potential returns.

Configuration

Markets

Define the connectors and trading pairs, in the class variable
markets, with the following structure:

Dict["connector_name", Set(Trading pairs)]

Execution

The method on_tick is executed every tick_size.
The tick_size by default is 1 second.

self.buy(connector_name, trading_pair, amount, order_type,
price, position_action)
self.sell(connector_name, trading_pair, amount, order_type,
price, position_action)
self.cancel(connector_name, trading_pair, order_id)

Note: position_action is only used in perpetuals.

self.get_balance_df()
Returns a DataFrame with the following columns:

 ["Exchange", "Asset", "Total Balance", "Available Balance"]

self.active_orders_df()
Returns a DataFrame with the following columns:

 ["Exchange", "Market", "Side", "Price", "Amount", "Age"]

Open Orders

Notifiers

Status

Accessing the connectors
They are stored in the instance variable connectors with the
following structure:

Dict["connector_name", ConnectorBase]
e.g.self.connectors["binance"] will return the Binance
exchange class.

Connectors Methods

Querying the Order Book

connector.get_vwap_for_volume(trading_pair, is_buy, volume)
connector.get_price_for_volume(trading_pair, is_buy, volume)
connector.get_quote_volume_for_base_amount(trading_pair, is_buy,
base_amount)
connector.get_volume_for_price(trading_pair, is_buy, price)
connector.get_quote_volume_for_price(trading_pair, is_buy,
price)

query_price
query_volume
result_price
result_volume

Use these methods to compute metrics efficiently:

Returns a ClientOrderBookQueryResult class with:

Rate Oracle
Provides conversion rates for any given pair token symbols in both
async and sync fashions.
Sync method: RateOracle.get_instance().get_pair_rate(trading_pair)
Async method: RateOracle.get_instance().rate_async(trading_pair)

Order Candidate

Budget Checker
connector.budget_checker.adjust_candidate(OrderCandidate,
all_or_none=True)
connector.budget_checker.adjust_candidates(List[OrderCandidate],
all_or_none=True)

Note: This checks if the balance is enough to place the order,
all_or_none=True will set the amount to 0 on insufficient balance
and all_or_none=False will adjust the order size to the available
balance.

